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ABSTRACT 

We es t ima te  by a combinator ia l  me thod  the packing d imension of the set 

of pa rame te r s  for which the  l imit  set of an i t e ra ted  funct ion sys tem has 

a drop of the  Hausdorff  dimension.  

1. Introduct ion  

Let V be an open and bounded subset of R d. For each parameter t 6 1? we 

consider a conformal iterated function system (IFS) t k ( f i ( ' , ) )~=l  in R d depending 

on the parameter t. We assume this dependence to be smooth (at least Cl+~). 

We denote by At the limit set of the IFS. We also denote by s ( t )  the solution of 

the Bowen's equation 

P ( s ( t ) x t )  = 0 

where Xt is the Lyapunov exponent of the IFS and P denotes the topological 

pressure. It is well known that  

dimH At _< s ( t ) .  

If, in addition, the IFS satisfies the Open Set Condition (OSC), it is a classical 

result (due to Hutchinson [Hu] and Manning and McCluskey [MM]) that the 

* Supported by Polish KBN Grant No 2 P03A 025 12 and Foundation for Polish 
Science. 
Received November 20, 2000 

125 



126 M. R AM S  Isr. J. Math .  

Hausdorff dimension of the limit set equals s(t). In this paper we do not assume 

the OSC is satisfied. Without this assumption we study the set of parameters t 

for which the Hausdorff dimension of the limit set is strictly smaller than s(t). 
In particular, assuming Policott and Simon's transversality condition, we are 

interested in estimating the dimension of the set of parameter  values t for which 

dimH At _< p 

for any p. 

THEOREM 1.1: For each p, let 

Gp = {t E V: dimH At _< p}. 

t k If the IFS (f~(.,))~=1 satisfies the transversality condition (Definition 4.4) and 
p < min(d, s(u)) then 

limsupdimp(Gp n Br(u)) <_ p, 
r ~ 0  

where dimp denotes the packing dimension. 

We refer the reader to the paper [PS] for both the estimations of the 'ex- 

ceptional' parameters  set in a much more general setting and the historical 

information on the problem. 

The paper is organized as follows. In the second section we introduce the 

notation we use and give basic information on IFS. The third section contains 

definitions and properties of intersection numbers. In the fourth section we give 

some technical results in parameter  space. Finally, the fifth section contains the 

last steps of the proof of Theorem 1.1. 

ACKNOWLEDGEMENT: I want to thank Yuval Peres, K~roly Simon and Boris 

Solomyak for valuable discussions. Part  of the results in this paper was proved 

during my visit to Washington University in Seattle; I thank them for their 

hospitality. I want also to thank very much all the readers of the present paper, 

whose comments greatly improved its quality. 

2. Background 

Two words about  notation first. Symbols c, c2, 5 and the like denote internal 

constants, to be used only within one proof. The same symbols in different 

lemmas and propositions do not necessarily denote the same constant. When the 

constant from one statement is to be used later, it will be denoted differently. 
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Symbol  ~ means  equali ty up to a bounded mult ipl icat ive constant .  Symbol  

I" [ means  d iamete r  (when used for sets). For a conformal  mapp ing  f from R d 

into itself we will denote f '  = I det D f p / d  - -  this is called the local contract ion 

(dilatat ion) ratio. 

Iterated function s y s t e m  is a finite family k (f~)i=l of contract ive diffeomor- 

phisms act ing from R d into itself. The  l i m i t  s e t  of  IFS is the unique non-empty  

compac t  set A satisfying the equat ion 

A = [..J f~(A). 

The  s y m b o l i c  s p a c e  of an IFS is defined as 

= {1, . . . ,  k}"; 

its e lements  will be denoted by w = (wlw2.. . ) .  The  finite sequences of symbols  

1 , . . . ,  k will be denoted by w" = (WlW2 .. �9 wn). The  set of all such finite sequences 

cc 1 . will be denoted E0 = (-J,=0{ , " ' ,  k} *" 

On E we define two mappings .  The  le f t  sh i f t  a deletes the first digit of a 

sequence: 

O(021~d2. . . )  = (032~d3. . . ) .  

The r i g h t  sh i f t  a ,  (i = 1, 2 . . . .  , k) adds the symbol  i at  the beginning of the 

sequence: 

~ i (~1w2. . . )  = ( i~1~2 . . . ) .  

We write f ~ ,  = f~,  o . . .  o f ~ , .  We define a project ion from E into Rd: 

(2.1) = lim/ o(0). 
n - - ~ o o  

By [Hu], A = 7r(E). When  x = ~r(w), w will be called the s y m b o l i c  expansion 
of x (it need not be uniquely defined). Dynamics  on A (given by f~'s) is a factor 

of  the dynamics  on E (given by right shifts c~,'s): 

ko = o i. 

We demand  tha t  all the mappings  f ,  are smoo th  (at least C 1+~) and conformal,  

at  least in some neighbourhood of A. The  la t ter  assumpt ion  is void in the one- 

dimensional  case but  quite restr ict ing (allowing only MSbius t ransformat ions)  

when d >_ 3. We denote by U the neighbourhood of A on which these assumpt ions  

are satisfied and assume U is bounded,  open, s imply connected.  
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As f~ are contractions with universally bounded contraction ratio, also f~  

satisfy the following inequality (called Bounded Distortion Property, BDP): 

Iron(x) - f~~ _< 50; 
(2.2) ~L~176 L ~  <- [ x -  y[f~,,(z) 

see [F2], chapter 4. 

As U is an open neighbourhood of the compact set A, there exist two constants 

L1, L2 such that  

(2.3) BL11uI(A) c U C BL~IuI(A). 

Because of (2.2), the family Uo~n = f~n (U) is regu la r ,  that is the ratio of the 

outer radius (the radius of the smallest ball containing the set) and the inner 

radius (the radius of the greatest ball contained in the set) is uniformly bounded 

in the family. We can freely demand that Ui C U for all i (for example, U -- 

Br(A) will satisfy this). It follows that U~n i C U~n. The sets U~n will be called 

cy l inders .  

We denote by A+n and A~ the maximum and minimum of the local contraction 

ratio of fw~ in U. We also denote A + = max~ A + and A- = mini A~- (i.e., the 

maximum and minimum of local contraction ratios of all the mapping fi). 

We will use sets E~n = a ~  (E) = a~ 1 o . . .  o cr~ (E) and call them cylinders, 

too (in symbolic space). It is easy to see that ~r(E~n) C U~- ; the cylinders U,~ 

and E ~  will be called dual .  

We introduce a metric on E given by p(w, T) = IU,~n I, where wi = T~ for all 

i _< n but not for i = n + 1. If wl r T1, then p(w, T) = IUI. This metric agrees 

with the product topology on E. It is easy to check that Ir is a Lipschitz mapping 

(with Lipschitz constant 1) in the metric p. 

We say that a family of cylinders Zl = {U~-: w n E T C E0} forms a M o r a n  

cove r  if their diameters are between v - l l  and vl (for some v) and their dual 

cylinders are disjoint and cover E. The minimal such v is called the v a r i a t i o n  

of Moran cover Zt. The following is standard. 

LEMMA 2.1: Take I <_ [U[. Let v be the maximal ratio of diameters of a cylinder 

and its immediate subcylinder. We can construct a Moran cover of size l and 

variation not greater than v 1/2. 

Proof: Note first that the ratio IUI/Ir(Uj)l is bounded (in j) ,  where r denotes 

the inner radius. Hence (by BDP (2.2)) also the ratio IU,~,I/]U~jl is uniformly 

bounded. We denote its upper bound by v. 
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We will construct the Moran cover by a repeated subdivision procedure: we 

start  from To = {0}. Then for all w '~ E Ti we check if IU~. I <- v1/21. If  yes, we put 

w n in T~+I. If  no, we put all the sequences w'~j (j = 1 , . . . ,  k) in Ti+l. On each 

step {E~. : w" E Ti} is a family of disjoint cylinders, covering E. Because all the 

mappings fi  are contractions with contraction ratios bounded away from 1, the 

diameters of cylinders U~. vanish exponentially fast with n, hence the procedure 

must stop (i.e., Ti = Ti+l . . . .  for some i). All the cylinders U~n : w" E T~ have 

diameters between v-l~21 and vl/21, hence they form a Moran cover we were 

looking for. | 

By the M o r a n  c o v e r i n g  we will mean a choice of Moran covers for all I < IU I 

with uniformly bounded variations. As follows from the Lemma 2.1, we can 

always construct a Moran covering of not too small variation. 

We will use now some facts from the thermodynamical  formalism; see, for 

example, [Bo]. We define a family of Hhlder continuous functionals on E: 

Cr( ) = r .  l o g ( L ,  o o 

There exists precisely one value r = s for which the pressure of Cr vanishes; we 

call it the s i m i l a r i t y  d i m e n s i o n  of IFS. Let # be the Gibbs measure (on E) 

for Cs and denote by u the projection of # under ~r. We will call v the n a t u r a l  

m e a s u r e  of the IFS. 

From the definition of Gibbs measure 

(2.4) exp 
z=0 

Hence, # is equivalent to the s-dimensional Hausdorff measure on (E, p). In 

particular, the Hausdorff dimension of A cannot be greater than s (as the Lips- 

chitz mappings cannot increase the Hausdorff dimension) and the Moran cover of 

size l has approximately l - s  elements, up to a multiplicative constant depending 

on its variation. 

For a family of IFS, the sequences giving a Moran covering for one parameter  

value will not give in general a Moran covering for different parameter  values. 

We will use a less restrictive notion. Given a family of Moran covers (Zt) we 

will call it D - c o v e r i n g  if the variation of the Moran cover Zt is not greater than 

v .  (I/[U]) D, hence not necessarily uniformly bounded in the whole family. We 

will use the notion for small D only. 
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3. I n t e r s e c t i o n  n u m b e r s  

Let us choose one Moran covering {Zt: l < IUI} with variation L3. By (2.4), the 

dual cylinders to those in Zt have measure # between L411 s and Lfl ~ for some 

L4 for all I. Hence Zl has between L41l -~ and La1-8 elements. Furthermore, if a 

cylinder belongs to Zt, then no less than L42([/I) -s and no more than L~([/l) -s 
of its subcylinders belong to Z 5 [ < I. 

PROPOSITION 3.1: The correlation dimension of the natural measure of a 
conformal IFS exists. 

Proof: The statement very similar to our assertion is proved in [PeSo]. The 

proof easily translates to our setting. 

Let Da be the partition of R d into dyadic grid boxes of size 2-a. The correlation 

dimension ([Pe]) is defined by 

dimc(u) = lira l~ 
n~o~ - n l o g 2  ' 

where T (2) = EQ6D. (u(Q)) ~'. Denote 

and 

p+o = s u p . ~  ,(~.~) 

p~. = inf #(E~.,~r.) 
~m ~ ( ~ m )  �9 

Let P E Da+b, Q ~ Db, P C Q. We have 

(3.1) u(P) < E P+"u(f~I(P))" 
w"EZ,: U~. nQ#O 

Denote 
p+(Q) -- ~ p+, 

and p_(Q) analogously. Now we will follow the proof of theorem i.I in [PeSo]. 

It is enough to prove that 

(2) ( ~ ) ~ 2 ) ( . ) ;  ~+b(v)  _< c ~  (:) 

then the result will follow by a sub-multiplicative argument. The same calcula- 

tions as in [PeSo], using (3.1), give us 

E p+(Q)2 
QEDb 
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and 

p-(O? _< 
QcDb 

"~n I --n By (2.4), the ratio p,, /p~ is uniformly bounded for all w n, 

follows. II 

We define the i n t e r s ec t i on  n u m b e r  

The result 

(note that we do not exclude the case w '~ = t~m).  It lies somewhere between 
~Zl ~ l -s and ~(Zt • Zt) ~ 1-2s. 

PROPOSITION 3.2: The limit 

= lim log At 
l~o - l o g  l 

exists and equals 2s - dimc(u).  It does not depend on the choice of U and Zl. 

Proof: We use another, equivalent definition of the correlation dimension: 

dimc(v) = rN01im lo@ log / u(B~(x))&'(x) .  

The pair (U, A) is mapped by any f ~  in a eonformal way with uniformly 
bounded distortion, hence (by (2.2)) 

BL;,L, LU~o,(~(r~o)) c u~o c BLoL2V~o,(~(Z~,,)) 

for all w n. Hence, given any x E A, any l <_ IUI and any U~n C Zl, x E ~r(E~,), 

we have BLolL1L~q(X ) C U~. (because of the uniform variation of the Moran 
covering). For the same reason the ball B(LoL2+I)LaI(X) contains all the cylinders 
from Zl, intersecting U~n. 

Let N(U~, )  be the number of cylinders from Zi, intersecting U~, (U~, itself 

included). As their dual cylinders have measure # approximately equal to I s, 

each 

U(BLolL,L;q(X)) ~_ LnlSN(Uw.) 

and 

u(B(LoL~+l)i~l(x)) >_ L4118N(U~) .  
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We sum these inequalities over all U~ E Zt, using the fact that their measure 

is approximately equal to l s, again. We get 

/ V(BLo,LIL~l l (X) )dv(x  ) < L212s 

and 

E N(U~) 
U,,,n E ZI 

f u(B(noL2+l)L3t(x))du(x) > L-4212~ E N(U~n). 
U~ E ZI 

Using now the definition flit = Y~ N(U~n), we get 

~ f r212s~ L4212SALoL-~lLar < v ( B r ( x ) ) d v ( x )  < ~4 t ~L31r/(LoL2+l) 

Now the assertion follows from the existence of correlation dimension. for all r. 
| 

An additional corollary follows from the proof above - -  that when we change 

U, all the numbers ,4t will change at most by a constant depending on U. 

As mentioned earlier, for a family of IFS we will need to work with D-coverings 

instead of Moran coverings. Let (Z D) be a D-covering, with variation of the Z D 

Moran cover not greater than L3(1/[U[) -D. We define ~D in the same way that 

At was defined. 

We first notice that by a repeated subdivision procedure we can change the 

D-covering into a Moran covering. The cylinders of Z D have diameters between 

L3111+DIuI-D and L311-D[U[ D. We divide the cylinders until their diameters 

are between L311 l+D I UI -D and L3 ll+D [U[ -D. We get a Moran cover of variation 

L3 and size ll+DIu[-D. These new Moran covers form a Moran covering. Note 

that all cylinders from Z D were divided onto subcylinders of diameter no more 
2s -2Ds than L](I/[UI) -2D times smaller, hence at most L4L 3 (1/IUI) of them. 

For every pair of intersecting cylinders from Z D we will thus get at most 

L24L48(l/lgl) -4Ds intersecting pairs in Zo+olVl-O. Hence 

A,l+olul-~ _< L24L4S([-~])-4sOA D. (3.2) 

This (together with Proposition 3.2) implies 

(3.3) dimc(u) > 2s(1 - D) 1 liminf log/]D 
-- I + D  I + D  l' ,~o - l o g l "  

We are basically interested in the Hausdorff dimension of the limit set. How- 

ever, as follows from the capacity definition of Hausdorff dimension (see [F1]), 
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the correlation dimension of y is a lower bound  for the Hausdorff  dimension of A. 

Hence the set of parameter  values for which the Hausdorff  dimension of the limit 

set drops is contained in the set of parameter  values for which the correlation 

dimension of the natural  measure drops and this is the set we will work with in 

the last section. 

4. T r a n s v e r s a l i t y  

We will now consider not a single IFS but  a d-dimensional family of IFS, act ing 

on ]R d. We will use t = ( t l , . . . ,  td) aS a parameter  and write the dependence on t 

explicitly; for example, the limit set will be denoted as At. The set of parameters  

is assumed to be the closure of a bounded  open subset of ]R d. We assume 

the contractions f i (x;  t) to  be C 1+~ for (x, t) C U x V, tha t  is we want all the 

derivatives Of,/Oxj and Of,/Otj to be C ~ with respect to bo th  x and t. 

Let us s tar t  with two technical lemmas. 

LEMMA 4.1: Given w, ~rt(w) is C 1+~ as a function oft .  The Hhlder constant for 
O~rt(w)/Ot 3 can be chosen independently of w. 

Proo~ We use the definition (2.1) of ~rt. The limit in (2.1) is approached at an 

exponential  rate, hence the derivative of the limit equals the limit of derivatives. 

We use the formula 

n 0 o ~--~(Sl o...Ofn)(X ) ----- E D;~(Sl o...ofi_l)(fio...oSn(x)) �9 ~S i ( f z+ l  . . .oSn(x))  
z = l  

and get 

Hi(t) : =  = 

$=0 

We remind the reader tha t  w * is the sequence of the first i symbols while ~9i+1 

is the (i + 1)-st symbol of the sequence w. Also, a * is the i- th power of the left 

shift a,  not  the i- th right shift which is denoted ai. 
First we prove Hj  to be bounded in t. I t  is so because IDxf~, I decays expo- 

nentially fast with i and O/Ota(f~,) is bounded.  

Now we want to prove tha t  Hj is Hhlder. Take t, u E I 7. We have 

(4.1) [Dxk(Th(w); t) - DJi(~r~(w);  t)] + [D,f,(Iru(w); t) - DJ , ( r~(w) ;  u)]. 
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In the first bracket at the right hand side of (4.1) we have the difference of 

values of the C ~ function, computed at two points at a distance not greater than 

co]t-  u I (from boundedness of H~). In the second bracket we have the difference 

of values of the C t~ function, computed at two points lying at distance [t - u I. 

All in all, the sum is not greater than cl[t - u] t~. The constant cl can be chosen 

independently of w and i by a compactness argument. Hence 

,H ~( t ) -H j (u ) ,  < (cl  ~. , D x f ~ . , ) l t -  u,~ < c 2 , t - u ,  ~ 

and we are done. | 

LEMMA 4.2: Given u E V, w n E Eo and x E U, the function 

log s t) 
Fx,w- (t) - log f~,  (x; u) 

is C ~ as a function of t ,  with H61der constant independent of  x and w n. 

Proo~ 

Denote 

We recall the notation f '  = (det Dxf )  Ud. We have to prove that  

t ! X I l o g L . ( x ; t )  - l o g L . ( x ;  u)l _< c [ t -  ul~l l o g L . (  ;u)l. 

9,,- (x; t) = [d log f~.  (x; t)l = I log det Dxfw.  (x; t)l. 

As f :  is C ~ and bounded away from 0, also its logarithm has to be C t~. Using 

the formula 
n 

(f l  o . . . o  fn)t(x) = H f/~(f,+l o . . .  o fn(x)) 
i = 1  

we get 

n 

]9w- (x; t) - g~o- (x; u) l < E [gw, (f~,,w- (x; t), t) - 9w. (fa,w, (x; u), u)]. 
i = 1  

Like in Lemma 4.1, f~ ,~ , (x; t )  is C 1+~ with respect to t; in particular it is 

Lipschitz. Writing the expression under the sum in the form 

we can estimate it by el]t - ulZ, like in the estimation of the right hand side of 

formula (4.1). The following inequality lets us estimate n from above (i.e. relate 

it to 9~-): 
g~. (x; u) > n] logA+(u)]. 
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Hence 

la . (x; t) - _ 

a n d  the assertion follows. | 

c~g~. (x; u)it  _ u] ~ 
I log A+(u)] 

COROLLARY 4.3: Similarity dimension s(t) is a C ~ function oft .  

Proo~ 

where 

We recall the definition of pressure: 

P(r; t) = lim 1 logM~-(r; t) = lim 1 logM+(r;  t), 
n - - * ~  n n - + o o  n 

Given u E 17, both 

and 

M (r;t) = Z r" 
o a n c { 1  . . . . .  k }  n 

log A~ (t) 

log ~ .  (u) 

log,k+. (t) 

log ~+. (u) 

are C ~ functions of t, with HSlder constant independent of w n - -  this follows 

easily from Lemma 4.2 applied to two points in U: one where ~ .  (t) is achieved 

and one where ~ .  (u) is achieved (respectively, A+. (t) and A+. (u)). 

Hence, given r, the pressure is a HSlder function of t. As its derivative is 
bounded from below, the zero of the pressure function (= similarity dimension) 
also depends on t in a HSlder way. | 

Denote h~,. (t) = ~t (w) -7rt(n).  The following definition was first introduced 
(in a one-dimensional situation) in [PoSi]. 

Definition 4.4: The family of IFS satisfies the t r a n s v e r s a l i t y  cond i t i on  if there 

exists a constant L5 such that  for any two sequences w, n E E with wl ~ nl, if 

Ih~,~(u)l < L5 then I detDth~,~(t)llt=~ > L5. 

Given two sequences w n, nm E Eo we denote by I(w n, ~m) the set of parameters 

t for which the cylinders U~n (t) and U~m (t) intersect each other. We will try to 

describe these sets using transversality. 
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LEMMA 4.5: Assume the transversality condition is satisfied; co and ~ are fike in 

its definition. Then any one component of (h~,~)- '  (B~ (0)), r < L5, is contained 

in some ball of radius L6r, L6 not depending on w or ~. 

Proof." The directional derivatives (over tj) of h~,~ are bounded from above 

by compactness of V. The determinant of Dth~,~ is bounded from below on 

(h~,~)-l(B~(0)) by transversality. Hence each branch of (h~,~)- '  is locally well 

defined on B~ (0) and its norm is uniformly bounded from above. | 

PROPOSITION 4.6: Assume the transversality condition is satisfied. Choose u C 

fz and let (Zt(u)) be a Moran covering in u. Then for any small v there exists 

an open set W ~ u and a constant Y(v)  such that for any I < [U[ and for any 

two cylinders U ~ ( u ) , U ~ ( u )  C Zl(u), w, ~ ~,, the set W n I ( w n , ~  m) can be 

covered with at most Y balls of radius Y l  1-v each. 

Proof: We need to prove the assertion for small l only; for big I it is automatically 

satisfied. Take small l; let w n and nm be like in the assertion. Let w and ~ be any 

two sequences, beginning with w ~ and ~m, respectively. We denote x(t) = ~rt (w), 

y(t) = 7ct(t~) and H(t)  = Ix(t) - y(t)l. Choose v. The cylinders U ~ ( u )  and 

U~-~ (u) have diameters approximately equal to 1. Hence, from Lemma 4.2 for W 

small enough, 

max(fU~o (t)l, Ig~m(t)[) < l ' - v  

for all t E W. We may assume l is so small that l ' - v  < L5/2, where L5 is the 

constant from the definition of transversality condition. We see that 

(t) c (x(t)) 

and 

(t) c B,,-v (y(t)). 

When t E I(w n, ~m), the points x(t) and y(t) have to be at a distance not 

greater than Lb. By Lemma 4.5 all the components of {t: H(t)  <_ 21 l -v}  D 

I(w'*, t~ m) A W are of diameter at most L611-v. 

We have only to estimate the number of such components. Let W1 and W2 be 

two of them. We choose the closest to every other point of W1 and W2 (denote 

them t O) and t (2)) and draw a line segment a between them. If the closest two 

points are not uniquely defined, we choose one of the pairs at minimal distance. 

At these points H(t  b)) = 211-~. 
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We consider the directional derivative of H(t) along a.  From transversality, 

like in the proof of Lemma 4.5, at the points t (1) and t (2) it is bounded away 

from zero (positive in t (1), negative in t (2) , of order at least c/L6 at both  points). 

But by Lemma 4.1 H is in class C 1+~, hence its directional derivative is Hhlder. 

The value of a Hhlder function cannot change too much in too short a distance, 

hence the length of a is uniformly bounded from below. 

All the components of {t: H(t) <_ 21~-~}NW are thus at a bounded-from-below 

distance from each other and hence their number depends only on the size of W 

and not on I. We are done. II 

5. P a r a m e t e r  s p a c e  

We want to estimate the size of the set of parameters  for which the condition on 

growth of intersection numbers given in Proposition 3.2 is fulfilled. To do that  

we will first rewrite them using another kind of intersection number. We define 

Note that  the inequality (3.2) stays true for these new intersection numbers as 

well (with the same proof). 

LEMMA 5.1: I f [< l, then 

A~ <_ L4(l/l)-2~At. 

Proof: The proof is similar to that  of the inequality (3.2). A cylinder from Z1 

has at most L2([/l) -~ subcylinders in Zp If two cylinders in Zt are disjoint, their 

subcylinders are disjoint, too. If two cylinders in Zt are not disjoint, there can 

be at most L4([/l) -28 intersections among their subcylinders. II 

To write the dependence of At and At, we will assume (from now on) that  the 

Moran coverings we use are chosen in a special way. Namely, we demand that  

there exists a sequence l~ ~ 0 such that  every cylinder U ~  belongs to at least 

one and at most some L7 of Moran covers Zt,. For L7 big enough it is easy to 

satisfy. 

LEMMA 5.2: For some L and ~ < 1 for any j > i 

13 _< L.y3 - i .  

Proo~ Choose any w C E and Urn E Zt~. The sequence 
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is decreasing not slower than (A+) i. As all of cylinders U ~ , ~  belong to no more 

than L7 Moran covers Zb, we get 

1j <_ c(A+)L~()-*)l,. | 

PROPOSITION 5.3: There exist Ls, L9 such that 

Ls l l -~ (  1+ Z l~A, , )_<A~<Ls/-~(I+ Z l~Al,). 
l~ ~_L911 l~ ~ L91 

Proo~ We will first construct a mapping r that for any pair of intersecting 

cylinders from Zl will give us a pair of intersecting cylinders from Zl~ for some 

l~ >_ L91 (L9 will be chosen in the future) and these new cylinders will have 

different first digits in their symbolic expansions. Then we will estimate how 

many preimages does any one of such pairs have. 

Let U ~  and U~m be two intersecting cylinders from Zl. Let 7/k be the greatest 
beginning common subword of w '~ and gm; we can write w ~ = llkb n-k and ~,n = 
~kTm--k. The sequences L n-k and T m - k  have different first digits. The triple 

(Uuk, U~,~, U~m) is the image of (U, U~-k, U~m-k) under f~k, hence (by bounded 

distortion) U~-k and U~m-k have approximately the same diameter. So, even if 

they do not both belong to one Moran cover Zl,, one of them belongs to some Zl, 

together with one of the close ancestors of the other one. Here, by an a n c e s t o r  
of U~,~ we mean any of cylinders U~-~ ; the ancestor is close if j is uniformly 

small. In addition, l~ >_ Lgl for some L9. 

We can freely assume that U~-k and U~-~-~ belong together to Zl,. We 

define 
= 

We have thus 

-~l <_ ~Zt + Z A~ M(l~,l), 
l~_L91 

where M(l~, l) is the maximal number of preimages under r that a given pair of 

intersecting cylinders from Zl, can have in Zz • Zz. 

The preimages of (U~,  U~m) are of the form ( U ~ h ~ l ,  U~m~2 ), where z/k is 

+ "~ l~/l, one of numbers j l ,  j2 is zero and the other is bounded. The such that ~ k  
word ~]k can be chosen in ci(li/l) ~ ways by (2.4). The word L ma~(j~'j~) can be 

chosen in at most c2 ways. Hence, 

M(1,,l) <_ ClC2(li/l) 8, 
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which proves the upper bound. 

The lower bound is proved in a similar way. Let U~n and U~,, be two intersect- 

ing cylinders from two Moran covers Zz/l~ and Zl(~/, l O) and/(2) approximately 

equal (slightly smaller) to I. The number of such pairs is approximately equal 

to Al, because some close ancestors of Uw,~ and U~,, are intersecting cylinders in 

Zl. We will define the mapping ~ in the same way as r was defined, only on a 

greater domain: all such pairs (w '~, ~;m). We need only to estimate the number 

of preimages of the mapping ~ from below. 

When looking for the preimages under ~o of a pair (t m~ , 7 m~) (U:~ and U~2 

being a pair of intersecting cylinders in Zt, with different first digits of their 

symbolic expansions), we will just add a word ~k at their beginning. The word 

rl k must be chosen such that f'~k ~ I/l~. The resulting pair of cylinders' diameters 

are approximately equal to l, hence it is a preimage of (tm~ Tin2) under qo. By 

(2.4), the word ~1 k may be chosen in approximately (I/l~) -~ ways, hence the 

number of preimages of any ( t '~ ,  7 m~) is not smaller than c(l/l~) -~. 

We finish the proof like for the upper bound. | 

LEMMA 5.4: Let (Zl(u)) be a Moran covering and denote by (Tl) the symbolic 

expansions of its cylinders. The families Xl( t)  = {U~,(t): w '~ E Tl} are then 

Moran covers, forming a D-covering with D <_ O([u - tl~). 

Proof." From the bounded distortion (2.1), the size of cylinders U~, (t), w" E Tl, 

is approximately equal to the derivative of the appropriate mapping f~ , .  From 

Lemma 4.2 we know that 

Since (for w" e Tt) 

log J~: (x ; t )  < c. I t -u l~ l logJ ' ,~ (x ;u ) l  �9 

! X"  fL-(.,u) - 

we get 

IU:(t) l c ), 
so we have obtained a D-covering. | 

As we see, when we choose a Moran covering for some parameter value u, 

we choose at the same time D-coverings for all t close to u. We will denote 

the intersection numbers of these coverings by .zit (t) and Al (t) (skipping D). We 

recall that by Gp we denote the set of parameter values t, for which the Hausdorff 
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dimension of the limit set At is strictly smaller than p. We will now prove a key 

proposition for the proof of Theorem 1.1. 

PROPOSITION 5.5: I f  p < s(U), then for sutt~ciently small r, 

apn Br(~) c U N{ t: At,(t) >_/f-2s(~)+w(r)}, 
1>0 l~ <l  

where w(r) < O(r~). 

Proof: Choose r and t C G v N Br (u). We will work with the Moran covering 

that we construct from the D-covering by subdivision, like for inequality (3.2). 

Denote the intersection numbers for this Moran covering by .4~ and A~. By 

Proposition 3.2 

lim log A~(t) 
t-~o -1-J~gZ > 2s ( t )  - p. 

Denote the left hand side of this inequality by z(t). We claim first that for any 

small E there exists n(e) such that 

(5.1) A~ (t) >_ l-( z(t)+~ 

for all i > n(e). Here n(e) may depend on t. By (3.2) we get 

> L 4 2 L 3 4 S ( t ) ( l _ ~ )  4s(t)D(t)/(l+D(t)) o 
At(t) __ AI1/(I+D(O) [UID/(I+D(O) " 

Substituting (5.1) we get (for l small enough) 

Al(t) >_ L42L34~(t) [Ul(-4s(t)+@-z(t))/(l+D(t)))D(t)l 4s(t)D(t)+@-z(t))/(l+D(t)). 

By Lemma 5.4 we have 

By Corollary 4.3 we have 

We get 

D(t) <_ cllt - ul ~. 

Is(t) - s (u ) l  _< c21t - ~1 ~ 

At >_ cl p-2s(u)+O(r~) 

and, as l -re will be greater than any constant for small enough l, the assertion 

follows. 
Now we prove the claim. Let us assume (5.1) is not true for some t, that is, 

A o l~Z(t)+ ~ t, ( t)  < 
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for infinitely many i. Let us choose one such i, very big. By Lemma 5.1 we have 

(5.2) A~' (t) < If  z(t)+e/2 

for all j > i such that L41f 2s(t)+z(t)-e/2 < l[ 2s(t)+z(t)-e. Assuming i was big, 

this is satisfied when lj > 11+~1 for some E1 that  does not depend on i. Denote 

the smallest such lj by [. 

By the definition of z(t), for any ~2 we can find such a small/(~2) that 

is z(t)+~2 < ~ol~ < 1-( z(t)-~ 

for all li </(r 

Let us take very small c2 and assume that li < l(~2). We have 

~o l.~Z(t)-e2 (t) < 

and 

(5.3) > i 

(because [ must be smaller than/(C2), too). 

By Proposition 5.3 we have 

A~(t) < L~([/l)-S<t) ~ ,  (t) + L8[ -s<t) E l~(t)A~k (t)" 
L~tl~>lk>Lv[ 

By Lemma 5.2 and inequality (5.2) (satisfied by all the Ik) the sum on the right 
hand side may be estimated by a geometric series with ratio 7 z(t)-8(0-~/2. We 

get 

L-Z(t)+8(0+~/2 /-z(t)+~/2 
A~(t) <_ L2s[ (-~ls(O-~(t)-~2)/(l+e') + L8-1 : ~ 2  

which contradicts (5.3) for e2 sufficiently small. This contradiction ends the proof 
of (5,1). We are done. | 

We will need the following cominatorial lemma. 

LEMMA 5.6: Let H be a regular family of sets E~ with diameters di. Given 
non-negative z, the set E of points that do belong to at/east b of the sets E, can 
be covered by such a family of open balls E,i with diameters d, that 

_ . Ee: 
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and sup(d~) < 4. sup(d~). 

Proof: The proof is based upon a construction, used in the proof of the Vitali 

covering theorem. Let us choose from the family H the set of greatest diameter, 

say El .  Then we choose the set of greatest diameter among those not intersecting 

El;  then once again we choose the greatest set that  does not intersect all the sets 

chosen before, and so on. In that  way we will choose some maximal family of 

disjoint sets from H; let us call it $/1. Next, we will choose (in the same way) the 

family H2 as the maximal family of disjoint sets from H \ HI ,  then the family 

H3 as the maximal family of disjoint sets from H \ ( H 1  U H2) and so on up to 

Hb. 
For the set Ei of diameter d~, denote by T(E~) a ball of diameter 4di, containing 

Bd~ (Ei). Denote I~ = T(Hi). 
We will first prove that  for any i _< b, 

E c U A .  
AEI~ 

i - 1  To prove this, first note that  if x E E,  then x E Ej for some Ej E H \ U,~=I Pin. 
It  is so because x belongs to at least b intersecting sets from H,  and any of 

famil ies / In  can contain at most one of them. 

If Ej E Hi, then x C Ej C T(E3) C Ii and we are done. If not, then (from 

the construction of H~) Ej must intersect some set Em C Hi with greater than 

or equal diameter. In this case, x C Ej C Bd~ (Era) C Balm (Era) C T(Em) C I~ 
and we are done again. 

We have then b families of balls, each one covering E. We have 

Hence, 

b b 

~=1 AEI~ z=l E)CH, E)EH 

for some i. I 

1 z 
IAI z _< 

AEI~ Ej cH 

We now give the proof of Theorem 1.1. 

Proof: We are going to use Proposition 5.5. Let r be small. Denote F, = 
p--2s(u)Tw(r) {t: Al. (t) >_ l i } M Br(u), w(r) from Proposition 5.5. Each of these sets 

is precisely the set of points t in the neighbourhood of u that  belong to at least 
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/~-28(u)+w(r) of sets I(w '~, ~'~), where U,~ (u) and U~,~ (u) belong to Zl, (u) and 

031 ~ /';1" 

By Proposition 4.6 the sets I(w n, ~m) N Br(u) are unions of no more than 

Y(r) sets of diameter smaller than Y(r)l~ -v(r). The family Zt~ has no more 

than L4/~ -8(~) elements. Hence by Lemma 5.6 the set F~ can be covered by 

L4Y(r)l~ p-w(r) balls of diameter  4Y(r)l~ -~(~). 
By Proposition 5.5 

CpnBr(u) cUE~, 

where E~ = [~j___i Fj.  We can estimate the upper Minkowski (box) dimension of 

each of the sets E~. Covering it with balls of diameter Y(r)l~ -~(~), Y(r)12~(~),... 
we get 

dimM(Ei) < p + w(r) 
- 1 v ( r ) "  

The packing dimension of each Ei (hence of their union as well) cannot be 

greater than their upper box dimension. Both w(r) and v(r) tend to 0 when r is 

decreasing. We are done. | 

COROLLARY 5.7: If p < S(U) then the s e t  Gp is of lirst category in the neigh- 

bourhood of u. 

Proo~ Every set of packing dimension z is a union of a countable family of sets 

of upper box dimension not greater than z, see [M]. The upper box dimension of 

a set and of its closure is the same. If the upper box dimension of a set is smaller 

than the dimension of the space, the set is thus nowhere dense. Hence, every set 

of packing dimension smaller than the dimension of the space is contained in a 

countable union of nowhere dense closed sets. | 
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