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ABSTRACT

We estimate by a combinatorial method the packing dimension of the set
of parameters for which the limit set of an iterated function system has
a drop of the Hausdorff dimension.

1. Introduction
Let V be an open and bounded subset of RE. For each parameter t € V we
consider a conformal iterated function system (IFS) (fi(,£))¥_; in R? depending
on the parameter t. We assume this dependence to be smooth (at least C1*5).
We denote by A; the limit set of the IFS. We also denote by s(t) the solution of
the Bowen’s equation

P(s(t)x:) =0

where x; is the Lyapunov exponent of the IFS and P denotes the topological
pressure. It is well known that

dimH At S S(t)

If, in addition, the IFS satisfies the Open Set Condition (OSC), it is a classical
result (due to Hutchinson [Hu] and Manning and McCluskey [MM]) that the
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Hausdorff dimension of the limit set equals s(¢). In this paper we do not assume
the OSC is satisfied. Without this assumption we study the set of parameters ¢
for which the Hausdorff dimension of the limit set is strictly smaller than s(t).
In particular, assuming Policott and Simon’s transversality condition, we are
interested in estimating the dimension of the set of parameter values ¢ for which

dimg A <p

for any p.

THEOREM 1.1: For each p, let
Gp = {t € V: dimgy A; < p}.

If the IFS (f,(-,t))k_, satisfies the transversality condition (Definition 4.4) and
p < min(d, s(u)) then

limsupdimp(G, N B, (u)) < p,
r\0

where dimp denotes the packing dimension.

We refer the reader to the paper [PS] for both the estimations of the ‘ex-
ceptional’ parameters set in a much more general setting and the historical
information on the problem.

The paper is organized as follows. In the second section we introduce the
notation we use and give basic information on IFS. The third section contains
definitions and properties of intersection numbers. In the fourth section we give
some technical results in parameter space. Finally, the fifth section contains the
last steps of the proof of Theorem 1.1.

ACKNOWLEDGEMENT: I want to thank Yuval Peres, Karoly Simon and Boris
Solomyak for valuable discussions. Part of the results in this paper was proved
during my visit to Washington University in Seattle; I thank them for their
hospitality. I want also to thank very much all the readers of the present paper,
whose comments greatly improved its quality.

2. Background

Two words about notation first. Symbols ¢, ¢z, ¢ and the like denote internal
constants, to be used only within one proof. The same symbols in different
lemmas and propositions do not necessarily denote the same constant. When the
constant from one statement is to be used later, it will be denoted differently.
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Symbol = means equality up to a bounded multiplicative constant. Symbol
| - | means diameter (when used for sets). For a conformal mapping f from R?
into itself we will denote f’ = |det Df|'/¢ — this is called the local contraction
(dilatation) ratio.

Iterated function system is a finite family (f,)¥_; of contractive diffeomor-
phisms acting from R? into itself. The limit set of IFS is the unique non-empty
compact set A satisfying the equation

A= AW
The symbolic space of an IFS is defined as
v={1,..., k"

its elements will be denoted by w = (wywa...). The finite sequences of symbols
1,..., k will be denoted by w™ = (wiw2 .. .wy). The set of all such finite sequences
will be denoted £o = |J2{1,...,k}"

On ¥ we define two mappings. The left shift o deletes the first digit of a
sequence:

o(wiwy...) = (wows . ..).
The right shift o, (i = 1,2,...,k) adds the symbol i at the beginning of the
sequence:

ai(wlwg . e ) = (iwlwg . )

We write f,» = f,, 0---0 f, . We define a projection from ¥ into R®:

(2.1) m(w) = lim fun(0).

n—o0

By [Hu], A = n(¥). When z = m{w), w will be called the symbolic expansion
of z (it need not be uniquely defined). Dynamics on A (given by f£,’s) is a factor
of the dynamics on ¥ (given by right shifts 7,’s):

fiom=moo;.

We demand that all the mappings f, are smooth (at least C'*#) and conformal,
at least in some neighbourhood of A. The latter assumption is void in the one-
dimensional case but quite restricting (allowing only Mébius transformations)
when d > 3. We denote by U the neighbourhood of A on which these assumptions
are satisfied and assume U is bounded, open, simply connected.
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As f, are contractions with universally bounded contraction ratio, also f
satisfy the following inequality (called Bounded Distortion Property, BDP):

2.2 LoVs,y,2€UVum -1 ¢ Mo (@) = fur W -
( ) 3 0Ve,y, EUVw €y L() > Ix—ylf,f,n(z) _Lo,

see [F2], chapter 4.

As U is an open neighbourhood of the compact set A, there exist two constants
Ly, Ly such that

(2.3) BL1|U|(A) cUc BL2|U| (A)

Because of (2.2), the family U, = f,»(U) is regular, that is the ratio of the
outer radius (the radius of the smallest ball containing the set) and the inner
radius (the radius of the greatest ball contained in the set) is uniformly bounded
in the family. We can freely demand that U; C U for all i (for example, U =
B,.(A) will satisfy this). It follows that Uyr; C Uyn. The sets U,» will be called
cylinders.

We denote by AT, and A7, the maximum and minimum of the local contraction
ratio of f,» in U. We also denote At = max; A} and A~ = min; A, (i.e., the
maximum and minimum of local contraction ratios of all the mapping f;).

We will use sets L n = o,y (X) = 0y, 0+ 00,, (X) and call them cylinders,
too (in symbolic space). It is easy to see that m(Z,n) C Uyn; the cylinders Uy,n
and ¥~ will be called dual.

We introduce a metric on ¥ given by p(w,7) = |U,n], where w; = 7, for all
1 < n but not for i = n+ 1. If wy # 7, then p(w, ) = |U|. This metric agrees
with the product topology on X. It is easy to check that « is a Lipschitz mapping
(with Lipschitz constant 1) in the metric p.

We say that a family of cylinders Z; = {Uyn: w™ € T C Xy} forms a Moran
cover if their diameters are between v~ and vl (for some v) and their dual
cylinders are disjoint and cover ¥. The minimal such v is called the variation
of Moran cover Z;. The following is standard.

LEMMA 2.1: Takel < |U|. Let v be the maximal ratio of diameters of a cylinder
and its immediate subcylinder. We can construct a Moran cover of size | and
variation not greater than v'/2.

Proof: Note first that the ratio |U|/|r(U;)| is bounded (in j), where r denotes
the inner radius. Hence (by BDP (2.2)) also the ratio [Uyr|/|Uyn»j| is uniformly
bounded. We denote its upper bound by v.
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We will construct the Moran cover by a repeated subdivision procedure: we
start from Ty = {0}. Then for all w™ € T; we check if |U,n»| < v!/21. If yes, we put
w” in Ty qq. If no, we put all the sequences w”j (7 =1,...,k) in T;41. On each
step {X,n: w™ € T;} is a family of disjoint cylinders, covering ¥. Because all the
mappings f; are contractions with contraction ratios bounded away from 1, the
diameters of cylinders U,» vanish exponentially fast with n, hence the procedure
must stop (i.e., Ty = T;+1 = - - - for some ). All the cylinders U,n: w" € T, have
diameters between v='/2] and v'/2l, hence they form a Moran cover we were
looking for. |

By the Moran covering we will mean a choice of Moran covers for all I < |U]
with uniformly bounded variations. As follows from the Lemma 2.1, we can
always construct a Moran covering of not too small variation.

We will use now some facts from the thermodynamical formalism; see, for
example, [Bo]. We define a family of Holder continuous functionals on X:

¢r(w) =1 -log(f,, omoo(w)).

There exists precisely one value r = s for which the pressure of ¢, vanishes; we
call it the similarity dimension of IFS. Let p be the Gibbs measure (on X)
for ¢s and denote by v the projection of y under 7. We will call v the natural
measure of the IFS.

From the definition of Gibbs measure

(2.4) W(Eun) ~ exp(ni:jl qss(a“'(w))) ~ ('[{5"")3.

Hence, p is equivalent to the s-dimensional Hausdorfl measure on (%, p). In
particular, the Hausdorff dimension of A cannot be greater than s (as the Lips-
chitz mappings cannot increase the Hausdorff dimension) and the Moran cover of
size [ has approximately ™% elements, up to a multiplicative constant depending
on its variation.

For a family of IFS, the sequences giving a Moran covering for one parameter
value will not give in general a Moran covering for different parameter values.
We will use a less restrictive notion. Given a family of Moran covers (Z;) we
will call it D-covering if the variation of the Moran cover Z; is not greater than
v+ (I/|U])P, hence not necessarily uniformly bounded in the whole family. We
will use the notion for small D only.
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3. Intersection numbers

Let us choose one Moran covering {Z;: | < |U|} with variation Ls. By (2.4), the
dual cylinders to those in Z; have measure p between Lles and L4l° for some
L, for all I. Hence Z; has between Lzll‘s and Lyl~* elements. Furthermore, if a
cylinder belongs to Z;, then no less than Ly 2(I/l)~* and no more than L2(I/1)~*
of its subcylinders belong to Zj, I<l.

ProprosIiTION 3.1: The correlation dimension of the natural measure of a
conformal IFS exists.

Proof: The statement very similar to our assertion is proved in [PeSo]. The
proof easily translates to our setting.

Let D, be the partition of R into dyadic grid boxes of size 2~¢. The correlation
dimension ([Pe]) is defined by

dime(v) = lim log ) (v)

n—o0 —nlog2 ’

where 75 = 0eD, . Denote
Snnm)
+n = su m /J’( LA
by P« ()
and = )
— Ml Lyn gm
D = 1nf —_—
H(Exm)

Let P € Dyyp, Q € Dy, P C Q. We have
(3.1) v(P) < > panv(foi (P)).
WwhEZ: Uyn NQ#D

Denote

p+(@) = > P

wrE€Z;: Uy,n NQ#D
and p_(Q) analogously. Now we will follow the proof of theorem 1.1 in [PeSo].
It is enough to prove that

7@ ) < P W) w);

then the result will follow by a sub-multiplicative argument. The same calcula-
tions as in [PeSo], using (3.1), give us

T(£2) ( < ClT(2) Z p+
Q€D,
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and

Y p QP < W)

QEDy

By (2.4), the ratio p}./p,. is uniformly bounded for all w®. The result
follows. ]

We define the intersection number
Al = ﬁ{(an,UNm) 6 Zl X Zl: an ﬂUnm # @}

(note that we do not exclude the case w™ = k™). It lies somewhere between
§Z; ~ 1% and }(Z; x Z;) = 172,

PROPOSITION 3.2: The limit

5 = Jim 1084
NO —logl

exists and equals 2s — dimg(v). It does not depend on the choice of U and Z;.

Proof:  We use another, equivalent definition of the correlation dimension:

dimg(v) = lim élog / V(B, (2))dv(z).
The pair (U,A) is mapped by any f,» in a conformal way with uniformly
bounded distortion, hence (by (2.2))

BL0-1L1|UWn|(7T(Ew")) C Uun C Brop,u | (m(Zwn))

for all w”. Hence, given any x € A, any | < |U| and any U,» € Z), z € 7(Zyn),
we have B -1y ;- () € Uyn (because of the uniform variation of the Moran
covering). For the same reason the ball Bz 1,+1)1,1(2) contains all the cylinders
from Z;, intersecting U,».

Let N(U,») be the number of cylinders from Z;, intersecting Uyn (Uyn itself
included). As their dual cylinders have measure u approximately equal to I%,
each

v(Brip,p-1(®) S Lal’ N(Upn)

and
V(B(LoLo+1)La1(€)) = Ly N (Uyr).
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We sum these inequalities over all Uy~ € Z;, using the fact that their measure
is approximately equal to [®, again. We get

/ v(Byos, g on(@)du() < L2 Y N(Uuw)

U,n€Z;

and

/ V(Bitoratyra(@)dv(@) > L7 S N(Uy).

an EZ,
Using now the definition A; = S N(U,n), we get

L3 Ay, < [ V(B @)dv(z) € LA g0

for all r. Now the assertion follows from the existence of correlation dimension.
|

An additional corollary follows from the proof above — that when we change
U, all the numbers A; will change at most by a constant depending on U.

As mentioned earlier, for a family of IFS we will need to work with D-coverings
instead of Moran coverings. Let (ZP) be a D-covering, with variation of the ZP
Moran cover not greater than Lz(I/|U|)~P. We define AP in the same way that
.le was defined.

We first notice that by a repeated subdivision procedure we can change the
D-covering into a Moran covering. The cylinders of Z,D have diameters between
L7YP\U|~P and L3l'~P|U[P. We divide the cylinders until their diameters
are between L3 112 |U|~P and L3l'*P|U|~P. We get a Moran cover of variation
L3 and size I'*P|U|=P. These new Moran covers form a Moran covering. Note
that all cylinders from ZP were divided onto subcylinders of diameter no more
than L2(1/|U|)~?P times smaller, hence at most L4L%*(I/|U|)~?P¢ of them.

For every pair of intersecting cylinders from Z,D we will thus get at most
L3L5*(1/|U])~*P* intersecting pairs in Zp+py|-o. Hence

l .
(3.2) A[1+D|U| p <L} L48(|U|) 4SDAlD.
This (together with Proposition 3.2) implies

_ iD
2s1-D) 1 l' 1nf log A;
- 1+D 1+ D logl

\Y

(3.3) dime (v)

We are basically interested in the Hausdorff dimension of the limit set. How-
ever, as follows from the capacity definition of Hausdorff dimension (see [F1]),
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the correlation dimension of v is a lower bound for the Hausdorff dimension of A.
Hence the set of parameter values for which the Hausdorff dimension of the limit
set drops is contained in the set of parameter values for which the correlation
dimension of the natural measure drops and this is the set we will work with in
the last section.

4. Transversality

We will now consider not a single IFS but a d-dimensional family of IFS, acting
on RY. We will use ¢t = (t1,..., tq) as a parameter and write the dependence on ¢
explicitly; for example, the limit set will be denoted as A;. The set of parameters
V is assumed to be the closure of a bounded open subset of R*. We assume
the contractions f;(z;t) to be C1*P for (z,t) € U x V, that is we want all the
derivatives 0f,/0z, and 9f,/dt; to be CP with respect to both z and ¢.

Let us start with two technical lemmas.

LEMMA 4.1: Given w, m(w) is C**# as a function of t. The Hélder constant for
0my(w)/0t, can be chosen independently of w.

Proof: We use the definition (2.1) of 7;. The limit in (2.1) is approached at an
exponential rate, hence the derivative of the limit equals the limit of derivatives.
We use the formula

O (Frov 0 fa)(@) = 32 Dulfror 0 fios) (o0 Fula)) 2 il Fusro..0 £o(o)

1=1

and get

%mwzgmmvmwy%mumw%»

Hj(t) =
We remind the reader that w* is the sequence of the first ¢ symbols while w;
is the (i + 1)-st symbol of the sequence w. Also, o is the i-th power of the left
shift o, not the ¢-th right shift which is denoted o;.
First we prove H; to be bounded in ¢. It is so because |Dgf,.| decays expo-
nentially fast with ¢ and 0/9¢,(f.,) is bounded.
Now we want to prove that H; is Hélder. Take t,u € V. We have

szz(ﬂt(w); t) - Dmfz(ﬂ'u(w); u’) -

(41)  [Dafi(me(w);t) — Do fi(mu(w); )] + [Dafo(mu(w); t) — Do fimu(w)s w)]-
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In the first bracket at the right hand side of (4.1) we have the difference of
values of the C# function, computed at two points at a distance not greater than
colt — u| (from boundedness of H,). In the second bracket we have the difference
of values of the C? function, computed at two points lying at distance |t — ul.

All in all, the sum is not greater than c;|t — u|?. The constant c; can be chosen

independently of w and i by a compactness argument. Hence
1H,0) ~ Hy ()| < (e0 X 1Daforl )it =l < calt = ul?
i
and we are done. |

LEMMA 4.2: Givenu € V, w™ € &y and ¢ € U, the function

_ log fln(z;t)

Four®) = 1og fon (i)

is CP as a function of t, with Hélder constant independent of x and w™.

Proof: We recall the notation f' = (det D, f)'/4. We have to prove that

|log £/ (z;t) — log fln(z;u)| < clt — ul?|log fn (z;u)|.

Denote
g (z3t) = |dlog fL.(z;t)| = |logdet Dy fon (x;t)].

As f! is C? and bounded away from 0, also its logarithm has to be C?. Using

the formula .

(flo...ofn)’(x):Hfi'(f,_‘_lo...ofn(.’r))

we get

|9un (25) = gun (@3 0)] < Y lu, (Foran (25),8) = G, (Forom (3 w), )

=1

Like in Lemma 4.1, f,i»(z;t) is C'*8 with respect to ¢; in particular it is

Lipschitz. Writing the expression under the sum in the form

|[gwl (fo“w" (I; t)v t) —Gw, (fa’w" (-T; u)v t)] +[gw, (fa'w" (-'L'; u)’ t) G, (fa'w" (.’L‘; u)7 u)]l

we can estimate it by ¢t — u|?, like in the estimation of the right hand side of

formula (4.1). The following inequality lets us estimate n from above (i.e. relate

it to gwn):
g (25 u) 2 nllog AT (u)].
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Hence
C19wm (x; u)

AT By 1B
Mgt (a)]*

|gun (23t) — gun (z;u)| <

and the assertion follows. |
COROLLARY 4.3: Similarity dimension s(t) is a C? function of t.

Proof: We recall the definition of pressure:

1
P(r;t) = lim ~log Mo (rit) = lim log M (1),

n—oo N n-+00 N

where

ME(ri)= > (G0).

wre{l,....k}n
Given u € V, both

log A_n (%)

log AL~ (u)
and

log Al (2)

log Ata (u)

are CP functions of ¢, with Holder constant independent of w™ — this follows
easily from Lemma 4.2 applied to two points in U: one where A_.(t) is achieved
and one where A_.(u) is achieved (respectively, AL (t) and AT, (u)).

Hence, given r, the pressure is a Holder function of t. As its derivative is
bounded from below, the zero of the pressure function (= similarity dimension)
also depends on ¢ in a Holder way. |

Denote hy, (t) = m(w) — m¢(x). The following definition was first introduced
(in a one-dimensional situation) in [PoSi].

Definition 4.4: 'The family of IF'S satisfies the transversality condition if there
exists a constant L5 such that for any two sequences w,k € ¥ with w; # ki, if
|hew x(u)] < Ls then |det Dyhy, ,(t) > Ls.

||t=u

Given two sequences w”, k™ € ¥ we denote by T{w™, s™) the set of parameters
t for which the cylinders U, (t) and U= (¢) intersect each other. We will try to
describe these sets using transversality.
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LEMMA 4.5: Assume the transversality condition is satisfied; w and « are like in
its definition. Then any one component of (hy )~ *(Br(0)), r < Ls, is contained
in some ball of radius Ler, Lg not depending on w or k.

Proof: The directional derivatives (over t;) of h,, , are bounded from above
by compactness of V. The determinant of Dyhy, . is bounded from below on
(hw,x)~1(B:(0)) by transversality. Hence each branch of (h, .)~! is locally well
defined on B,.(0) and its norm is uniformly bounded from above. |

PROPOSITION 4.6: Assume the transversality condition is satisfied. Choose u €
V and let (Z;(u)) be a Moran covering in u. Then for any small v there exists
an open set W > v and a constant Y (v) such that for any | < |U| and for any
two cylinders Uyn (1), Ugm (u) € Zi(u), wy # K1, the set W N I(w™, k™) can be
covered with at most Y balls of radius Y1~V each.

Proof: 'We need to prove the assertion for small [ only; for big [ it is automatically
satisfled. Take small /; let w™ and £™ be like in the assertion. Let w and & be any
two sequences, beginning with w™ and ™, respectively. We denote z(t) = m(w),
y(t) = m(k) and H(t) = |z(t) — y(t)|. Choose v. The cylinders U, (u) and
U, (u) have diameters approximately equal to [. Hence, from Lemma 4.2 for W
small enough,

max(|Uun (8)], [Uen (8)]) < 1177

for all t € W. We may assume [ is so small that [~V < Ls/2, where Ls is the
constant from the definition of transversality condition. We see that

Uun(t) C Bp-o (z(t))

and
Ugn (t) C Bp-+(y(t))-

When t € I{w™ &™), the points z(t) and y(t) have to be at a distance not
greater than Ls. By Lemma 4.5 all the components of {t: H(t) < 2I'=¥} >
I(w™, k™) NW are of diameter at most Lgl!~".

We have only to estimate the number of such components. Let W; and W3 be
two of them. We choose the closest to every other point of Wi and W (denote
them t() and ¢(®)) and draw a line segment o between them. If the closest two
points are not, uniquely defined, we choose one of the pairs at minimal distance.
At these points H(t®) = 21*~7.
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We consider the directional derivative of H(t) along . From transversality,
like in the proof of Lemma 4.5, at the points t) and t® it is bounded away
from zero (positive in t(1, negative in t®, of order at least ¢/ L¢ at both points).
But by Lemma 4.1 H is in class C'*#, hence its directional derivative is Holder.
The value of a Holder function cannot change too much in too short a distance,
hence the length of « is uniformly bounded from below.

All the components of {t: H(t) < 2117?}NW are thus at a bounded-from-below
distance from each other and hence their number depends only on the size of W
and not on I. We are done. |

5. Parameter space

We want to estimate the size of the set of parameters for which the condition on
growth of intersection numbers given in Proposition 3.2 is fulfilled. To do that
we will first rewrite them using another kind of intersection number. We define

A= ﬁ{(an,Unm) €Z; x Zp:Upyn NUgm :,'é (Z),wl 7é K‘,l}.

Note that the inequality (3.2) stays true for these new intersection numbers as
well (with the same proof).

LEMMA 5.1: Ifl < l, then
A; < LA/~ A,

Proof:  The proof is similar to that of the inequality (3.2). A cylinder from Z;
has at most L3(I/1)~* subcylinders in Z;. If two cylinders in Z; are disjoint, their
subcylinders are disjoint, too. If two cylinders in Z; are not disjoint, there can
be at most L;‘([ /1)~2¢ intersections among their subcylinders. |

To write the dependence of A; and A, we will assume (from now on) that the
Moran coverings we use are chosen in a special way. Namely, we demand that
there exists a sequence [, N\, 0 such that every cylinder U~ belongs to at least
one and at most some L; of Moran covers Z;,. For L; big enough it is easy to
satisfy.

LEMMA 5.2: For some L and y < 1 for any j > 1
l, <Lyt

Proof: Choose any w € £ and U,» € Z;,. The sequence

{|U7-'ﬂ l, |Uan1 I, IUan2 l, .. }
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is decreasing not slower than (A*)%. As all of cylinders U, belong to no more
than Ly Moran covers Z;,, we get

I, <cAH)ET 0y, g

PROPOSITION 5.3: There exist Lg, Ly such that

Ll (1 + Y lfA,l) < A < Lgl™® (1 + Y lgA,,).
L,>L3' L, > Lol
Proof: We will first construct a mapping ¢ that for any pair of intersecting
cylinders from Z; will give us a pair of intersecting cylinders from Z;, for some
l, > Lgl (Lg will be chosen in the future) and these new cylinders will have
different first digits in their symbolic expansions. Then we will estimate how
many preimages does any one of such pairs have.

Let U= and U,= be two intersecting cylinders from Z;. Let * be the greatest
beginning common subword of w™ and £™; we can write w™ = 7¥,"~* and k™ =
n*rm=k_ The sequences :*~% and 7™ % have different first digits. The triple
(Uye, Uyn, Ugm) is the image of (U,U;n-k,U,m-x) under fyx, hence (by bounded
distortion) U,«-+ and U,=—» have approximately the same diameter. So, even if
they do not both belong to one Moran cover Z,, one of them belongs to some Z;,
together with one of the close ancestors of the other one. Here, by an ancestor
of U,» we mean any of cylinders U,n-,; the ancestor is close if j is uniformly
small. In addition, I, > Lgl for some Lg.

We can freely assume that U.-x and U,m-x—, belong together to Z;,. We
define

¢(wn, Hm) - (Ln—k’ Tm—k—j)‘

We have thus
A <Hzi+ ) ALM(3LD),
L>Lol
where M (l,,1) is the maximal number of preimages under ¢ that a given pair of
intersecting cylinders from Z;, can have in Z; x Z;.

The preimages of (Uyn,Uxm) are of the form (Upkyn,o1 , Upkgm 2 ), where 7 is
such that )\;“k & [, /1, one of numbers j;, ja is zero and the other is bounded. The
word 7* can be chosen in ¢;(l;/1)* ways by (2.4). The word (™**(1:2) can be
chosen in at most ¢ ways. Hence,

M(1,,1) < crea(li/1)°,
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which proves the upper bound.

The lower bound is proved in a similar way. Let U,» and Ugm be two intersect-
ing cylinders from two Moran covers Z;u, and Zys), [(Y) and 1(?) approximately
equal (slightly smaller) to . The number of such pairs is approximately equal
to A;, because some close ancestors of U,» and Ugm are intersecting cylinders in
Z;. We will define the mapping ¢ in the same way as ¢ was defined, only on a
greater domain: all such pairs (w™, k™). We need only to estimate the number
of preimages of the mapping ¢ from below.

When looking for the preimages under ¢ of a pair (4™, 7™2) (U,m, and Urm.
being a pair of intersecting cylinders in Z;, with different first digits of their
symbolic expansions), we will just add a word #* at their beginning. The word
n* must be chosen such that f v/zk a2 [/l,. The resulting pair of cylinders’ diameters
are approximately equal to [, hence it is a preimage of (™!, 7™2) under ¢. By
(2.4), the word #* may be chosen in approximately (I/l,)~° ways, hence the
number of preimages of any (¢™',7™2) is not smaller than e(l/1,)~%.

We finish the proof like for the upper bound. |

LEmMMA 5.4: Let (Z;(u)) be a Moran covering and denote by (1}) the symbolic
expansions of its cylinders. The families X;(t) = {Uyn(t): w™ € T;} are then
Moran covers, forming a D-covering with D < O(Ju — t|?).

Proof: From the bounded distortion (2.1), the size of cylinders U, (t), w™ € T},
is approximately equal to the derivative of the appropriate mapping f,». From
Lemma 4.2 we know that

fln(zit)
log 22" | < e |t — ulB] ! (T u)].
og 2| < - = ul g fn (i)

Since (for w™ € T;)
forn (@3 w) = /U]

lan(t)l S (cll(ﬁ)c”_uh;’c2l(_|_[17|)—6|t~u|5)’

s0 we have obtained a D-covering. ]

we get

As we see, when we choose a Moran covering for some parameter value wu,
we choose at the same time D-coverings for all ¢ close to u. We will denote
the intersection numbers of these coverings by A;(t) and A;(t) (skipping D). We
recall that by G, we denote the set of parameter values ¢, for which the Hausdorff
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dimension of the limit set A; is strictly smaller than p. We will now prove a key
proposition for the proof of Theorem 1.1.

PROPOSITION 5.5: If p < s(u), then for sufficiently small r,

U n{t Al lp 2s(u)+w 'r)}

>0, <1

where w(r) < O(rP).

Proof:  Choose r and t € Gp N B, (u). We will work with the Moran covering
that we construct from the D-covering by subdivision, like for inequality (3.2).
Denote the intersection numbers for this Moran covering by A and A9. By
Proposition 3.2

lo_g/‘l_"ﬁ > 2 S(t) _
1\.0 —logl
Denote the left hand side of this inequality by z(t). We claim first that for any
small ¢ there exists n(e) such that

(5.1) A9 (t) > 72O+

i, b
for all > n(e). Here n(¢) may depend on ¢. By (3.2) we get

l ) 4s(t)D(t)/(1+D(®))

—4s(t
Al(t) > L4 2L 8( )(IUI [L/(+D($) [U]D/(1+D(8) *

Substituting (5.1) we get (for [ small enough)
A(t) > LzzL;‘ls(t)|U|(—43(t)+(€—2(t))/(1+D(t)))D(t)143(t)D(t)+(6—z(t))/(l+D(t))‘
By Lemma 5.4 we have
D(t) < c1]t — u)P.
By Corollary 4.3 we have
[s(t) — s(u)] < ca|t — ul?.

We get
A > clP—28(w)+0(r?)

and, as [ =* will be greater than any constant for small enough [, the assertion
follows.
Now we prove the claim. Let us assume (5.1) is not true for some ¢, that is,

AP (1) < 1720+

1
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for infinitely many i. Let us choose one such 4, very big. By Lemma 5.1 we have
(5.2) Ag (t) < 12OFe/

—28(t)+2(t)—¢

i

for all j > ¢ such that Ljl; *(I+*0~/2

this is satisfied when I; > I;T°' for some ; that does not depend on i. Denote

. Assuming i was big,

the smallest such I; by L.
By the definition of z(t), for any €2 we can find such a small [(e3) that

li—z(t)+52 < ;1;)1 <l;z(t)—€2

for all [; < l((:’z).
Let us take very small £; and assume that I; < I(e2). We have

Ap () <1770

1 1

and
(5.3) A2(t) > I-#(+e

(because I must be smaller than I(e3), t00).
By Proposition 5.3 we have

Aoty < LRI OA ) + Lel™*® S 53948 ).
Lyt >l>Lol

By Lemma 5.2 and inequality (5.2) (satisfied by all the {;) the sum on the right
hand side may be estimated by a geometric series with ratio y*(1)=3(t)=¢/2_ We
get

L—z(t)+s(t)+s/2

F—z(t)+e/2
_7z(t)—s(t)—s/2l A0+e/ ’

A;—’(t) < L{ZJ(—EI8(5)—Z(t)—'€2)/(1+€1) + le
which contradicts (5.3) for &3 sufficiently small. This contradiction ends the proof
of (5.1). We are done. ]

We will need the following cominatorial lemma.

LEMMA 5.6: Let H be a regular family of sets E, with diameters d;. Given
non-negative z, the set E of points that do belong to at least b of the sets E, can
be covered by such a family of open balls E’i with diameters d, that

2&554’-%2012‘
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and sup(d,) < 4 - sup(d,).

Proof: The proof is based upon a construction, used in the proof of the Vitali
covering theorem. Let us choose from the family H the set of greatest diameter,
say Fy. Then we choose the set of greatest diameter among those not intersecting
FE4; then once again we choose the greatest set that does not intersect all the sets
chosen before, and so on. In that way we will choose some maximal family of
disjoint sets from H; let us call it Hy. Next, we will choose (in the same way) the
family H, as the maximal family of disjoint sets from H ~ Hy, then the family
Hj as the maximal family of disjoint sets from H “(H; U Hj) and so on up to
Hy,.

For the set E; of diameter d,, denote by T(F,) a ball of diameter 4d;, containing
By, (Ez) Denote I, = T(Hz)

We will first prove that for any ¢ < b,

Ec|JaA

A€l,

To prove this, first note that if z € E, then z € E; for some E; € H ™ U:;ll H,.
It is so because x belongs to at least b intersecting sets from H, and any of
families H,, can contain at most one of them.

If E; € H;, then z € E; C T(E,) € I; and we are done. If not, then (from
the construction of H,) E, must intersect some set E,, € H; with greater than
or equal diameter. In this case, z € E; C By, (En) C By, (Em) C T(Ey) € 1,
and we are done again.

We have then b families of balls, each one covering E. We have

b b
Sy ursrY Y gY@

1=1 A€, +=1 E,€H, E,eH

Hence,

S lap<n Y &
E,cH

Acl,

for some 3. |
We now give the proof of Theorem 1.1.

Proof: We are going to use Proposition 5.5. Let r be small. Denote F, =
{t: A, (t) > lf—zs(")+w(r)} N B, (u), w(r) from Proposition 5.5. Each of these sets
is precisely the set of points ¢ in the neighbourhood of u that belong to at least
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(P22 relr) o sets I(w™, ™), where Uyn () and Ugm (u) belong to Z;, () and
wy # k1.

By Proposition 4.6 the sets I(w™, k™) N B,(u) are unions of no more than
Y(r) sets of diameter smaller than Y (r)l} =" The family Z, has no more
than Lal, () olements. Hence by Lemma 5.6 the set F, can be covered by
LaY (r)I777") balls of diameter 4Y (r)i} ™",

By Proposition 5.5

GpN Br(uw) C | J B
v

where E, = ();>; F;. We can estimate the upper Minkowski {box) dimension of

each of the sets E,. Covering it with balls of diameter Y (r)i; - Y(r)lzl;f o

we get

- p+w(r)
d E)<=——"2.
ma (Bs) < 1—w{r)
The packing dimension of each E; (hence of their union as well) cannot be
greater than their upper box dimension. Both w(r) and v(r) tend to 0 when r is
decreasing. We are done. |

COROLLARY 5.7: If p < s(u) then the set G, is of first category in the neigh-
bourhood of u.

Proof: Every set of packing dimension z is a union of a countable family of sets
of upper box dimension not greater than z, see [M]. The upper box dimension of
a set and of its closure is the same. If the upper box dimension of a set is smaller
than the dimension of the space, the set is thus nowhere dense. Hence, every set
of packing dimension smaller than the dimension of the space is contained in a
countable union of nowhere dense closed sets. |
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